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Classification:  Problem Statement 

  In regression, we are modeling the relationship 
between a continuous input variable x and a 
continuous target variable t. 

  In classification, the input variable x is still 
continuous, but the target variable is discrete. 

  In the simplest case, t can have only 2 values. 
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Example Problem 

  Animal or Vegetable? 
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Linear Models for Classification 

  Linear models for classification separate input vectors into 
classes using linear decision boundaries. 
  Example: 

!4 !2 0 2 4 6 8

!8

!6

!4

!2

0

2

4

  Input vector x

  Two discrete classes C1 and C2



Linear Models for Classification 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

5 

Discriminant Functions 

   

A linear discriminant function y(x) = f w tx +w0( )  

maps a real input vector x to a scalar value y(x).

  f (⋅) is called an activation function.
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Outline 

  Linear activation functions 
 Least-squares formulation 
 Fisher’s linear discriminant 

  Nonlinear activation functions 
 Probabilistic generative models 
 Probabilistic discriminative models 

  Logistic regression 
 Bayesian logistic regression 
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Two Class Discriminant Function 

   

Let f (⋅) be the identity:
y(x) = w tx +w0

    

y(x) ≥ 0→ x assigned to C1

y(x) < 0→ x assigned to C2

   Thus y(x) = 0 defines the decision boundary
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K>2 Classes 

  Idea #1: Just use K-1 discriminant functions, each of 
which separates one class Ck from the rest.  (One-
versus-the-rest classifier.) 

  Problem:  Ambiguous regions 
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K>2 Classes 

  Idea #2: Use K(K-1)/2 discriminant functions, each 
of which separates two classes Cj, Ck from each 
other. (One-versus-one classifier.) 

  Each point classified by majority vote. 
  Problem:  Ambiguous regions 
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K>2 Classes 

  Idea #3:  Use K discriminant functions yk(x) 
  Use the magnitude of yk(x), not just the sign. 

   yk (x) = w k
t x +wk0

    x assigned to Ck  if yk (x) > y j (x)∀j ≠ k

   
Decision boundary yk (x) = y j (x)→ wk −w j( )t x + wk0 −w j 0( ) = 0

 

Results in decision regions that are 
simply-connected and convex. Ri
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Learning the Parameters 

  Method #1:  Least Squares 

   yk (x) = w k
t x +wk0

    → y(x) = Wt x

    

where 
x = (1,xt )t

W is a (D +1) × K  matrix whose kth column is w k = w0,w k
t( )t  
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Learning the Parameters 

  Method #1:  Least Squares 
    y(x) = Wt x

    Training dataset xn,tn( ), n = 1,…,N

   Let T be the N × K  matrix whose nth  row is tn
t

   where we use the 1-of-K  coding scheme for tn

    Let X be the N × (D +1) matrix whose nth  row is xn
t

    
We define the error as ED

W( ) = 1
2

Tr X W − T( )t X W − T( ){ }

    

Setting derivative wrt W yields:
W = Xt X( )−1 XtT = X†T
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Fisher’s Linear Discriminant 

  Another way to view linear discriminants:  find the 1D subspace 
that maximizes the separation between the two classes. 
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Let m1 =

1
N1

xn
n∈C1

∑ , m2 =
1

N2

xn
n∈C2

∑

   For example, might choose w  to maximize w t m2 −m1( ),  subject to w = 1

  This leads to w ∝m2 −m1

 

However, if conditional distributions are not isotropic, 
this is typically not optimal.
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Fisher’s Linear Discriminant 

!2 2 6

!2

0

2

4

   Let m1 = w tm1,   m2 = w tm2  be the conditional means on the 1D subspace.

   
Let sk

2 = yn − mk( )2

n∈Ck

∑  be the within-class variance on the subspace for class Ck

   
The Fisher criterion is then J(w) =

m2 − m1( )2

s1
2 + s2

2

    

This can be rewritten as 

J(w) =
w tSBw
w tSW w

where 

SB = m2 −m1( ) m2 −m1( )t  is the between-class variance

and 

SW = xn −m1( ) xn −m1( )t
n∈C1

∑ + xn −m2( ) xn −m2( )t
n∈C2

∑  is the within-class variance

   J(w) is maximized for w ∝SW
−1 m2 −m1( )
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Connection between Least-Squares and FLD 

   

Change coding scheme to 

tn =
N
N1

 for C1

tn = −
N
N2

 for C2

   

Then one can show that the ML w  satisfies
w ∝SW

−1 m2 −m1( )
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Least Squares Classifier 

  Problem #1:  Sensitivity to outliers 
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Least Squares Classifier 

  Problem #2:  Linear activation function is not a 
good fit to binary data.  This can lead to problems. 
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Outline 

  Linear activation functions 
 Least-squares formulation 
 Fisher’s linear discriminant 

  Nonlinear activation functions 
 Probabilistic generative models 
 Probabilistic discriminative models 

  Logistic regression 
 Bayesian logistic regression 
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Probabilistic Generative Models 

  Consider first K=2: 

    

By Bayes' equation, the posterior for class C1 can be written :

p C1 | x( ) = p x | C1( )p C1( )
p x | C1( )p C1( ) + p x | C2( )p C2( )

=
1

1+ exp(−a)
= σ (a)

where

a = log
p x | C1( )p C1( )
p x | C2( )p C2( )

and σ (a) is the logistic sigmoid function
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Probabilistic Generative Models 

    

Let's assume that the input vector x is multivariate normal, when conditioned upon the class Ck ,
and that the covariance is the same for all classes :

p x | Ck( ) = 1

2π( )D / 2
Σ

1/2 exp −
1
2

x − µk( )t Σ−1 x − µk( )⎧
⎨
⎩

⎫
⎬
⎭

    

Then we have that p C1 | x( ) = σ w tx +w0( )
where
w = Σ−1 µ1 − µ2( )
w0 = −

1
2
µ t

1Σ
−1µ1 +

1
2
µ t

2Σ
−1µ2 + log

p C1( )
p C2( )

 

Thus we have a generalized linear model, 
and the decision surfaces will be hyperplanes in the input space.
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Probabilistic Generative Models 

    

Then we have that ak (x) = w k
tx +wk0

where
w k = Σ−1µk

wk0 = −
1
2
µ t

kΣ
−1µk + log p Ck( )

    

This result generalizes to K > 2 classes :

p Ck | x( ) = p x | Ck( )p Ck( )
p x | C j( )p C j( )

j
∑

=
exp ak( )

exp aj( )
j
∑

where

ak = log p x | Ck( )p Ck( )( )

“softmax” 
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Non-Constant Covariance 

  If the class-conditional covariances are different, 
the generative decision boundaries are in general 
quadratic.  
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ML for Probabilistic Generative Model 

   
µ1 =

1
N1

tnxn
n=1

N

∑

   
µ2 =

1
N2

1− tn( )xn
n=1

N

∑
    

Σ =
N1

N
S1 +

N2

N
S2

where

S1 =
1
N1

xn − µ1( ) xn − µ1( )t
n∈C1

∑
and

S2 =
1

N2

xn − µ2( ) xn − µ2( )t
n∈C2

∑

  Let tn = 1 denote Class 1, tn = 0 denote Class 2.

 Then the ML estimates for the parameters are:
   
Let π = p C1( )  so that 1- π = p C2( )

  
π =

N1

N1 + N2
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Probabilistic Discriminative Models 

  An alternative to the generative approach is to 
model the dependence of the target variable t on 
the input vector x directly, using the activation 
function f. 

  One big advantage is that there will typically be 
fewer parameters to determine. 
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Logistic Regression (K = 2) 

    

p C1 |φ( ) = y φ( ) = σ w tφ( )
p C2 |φ( ) = 1− p C1 |φ( )   

where σ (a) = 1
1− exp(−a)

140 8 Classification models
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Figure 8.3 Logistic regression model in 1D and 2D. a) One dimensional fit.
Green points denote set of examples S0 where y = 0. Pink points denote
set of examples S1 where y = 1. Note that in this (and all future figures
in this chapter) we have only plotted the probability Pr(y = 1|x) (compare
to figure 8.2c). The probability Pr(y = 0|x) can be trivially computed as
1 − Pr(y = 1|x). b) Two dimensional fit. Here, the model has a sigmoid
profile in the direction of the gradient φ and is constant in the orthogonal
directions. The decision boundary (blue line) is linear.

As usual, however, it is simpler to maximize the logarithm L of this expression.

Since the logarithm is a monotonic transformation, it does not change the position

of the maximum with respect to φ. However, applying the logarithm the product

and replaces it with a sum so that

L =

I�

i=1

yi log

�
1

1 + exp[−φTxi]

�
+

I�

i=1

(1− yi) log

�
exp[−φTxi]

1 + exp[−φTxi]

�
. (8.6)

The derivative of the log likelihood L with respect to the parameters φ is

∂L

∂φ
=

I�

i=1

�
1

1 + exp[−φTxi]
− yi

�
xi =

I�

i=1

(sig[ai]− yi)xi. (8.7)

Unfortunately, when we equate this expression to zero, there is no way to re-

arrange to get a closed form solution for the parameters φ. Instead we must

rely on a non-linear optimization technique to find the maximum of this function.

We’ll now sketch the main ideas behind non-linear optimization. We defer a more

detailed discussion until section 8.10.

In non-linear optimization, we start with an initial estimate of the solution

φ and iteratively improve it. The methods we will discuss rely on computing

  w
tφ

    p C1 |φ( ) = y φ( ) = σ w tφ( )

  x1
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Logistic Regression 

  Number of parameters 
  Logistic regression: M 
 Generative model: 2M + M(M+1)/2 + 1 = M(M+5)/2+1 

    

p C1 |φ( ) = y φ( ) = σ w tφ( )
p C2 |φ( ) = 1− p C1 |φ( )

  

where

σ (a) = 1
1− exp(−a)
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ML for Logistic Regression 

   
p t |w( ) = yn

tn 1− yn{ }1− tn

n=1

N

∏      where t = t1,…,tN( )t and yn = p C1 |φn( )

   We define the error function to be E(w) = − log p t | w( )

   Given yn = σ an( )  and an = w tφn,  one can show that

   
∇E(w) = yn − tn( )φn

n=1

N

∑

  Unfortunately, there is no closed form solution for w.
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ML for Logistic Regression:   

  Iterative Reweighted Least Squares 
 Although there is no closed form solution for the ML 

estimate of w, fortunately, the error function is convex. 
 Thus an appropriate iterative method is guaranteed to 

find the exact solution. 
 A good method is to use a local quadratic 

approximation to the log likelihood function (Newton-
Raphson update): 

   

w (new ) = w (old ) −H−1∇E(w)
where H is the Hessian matrix of E(w)
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ML for Logistic Regression 

   

w (new ) = w (old ) −H−1∇E(w)
where H is the Hessian matrix of E(w) :

   

Thus

wnew = w (old ) − ΦtRΦ( )−1
Φt y − t( )

   

H = ΦtRΦ
where R  is the N × N  diagonal weight matrix with Rnn = yn 1− yn( )  

   

(Note that, since Rnn ≥ 0, R  is positive semi-definite, and hence H is positive semi-definite
Thus E(w) is convex.)
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ML for Logistic Regression 

  Iterative Reweighted Least Squares 

142 8 Classification models
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Figure 8.4 Parameter estimation for logistic regression with 1D data. a)
In maximum likelihood learning, we seek the maximum of Pr(y|X,φ) with
respect to φ. b) In practice, we instead maximize log likelihood: notice
that the peak is in the same place. Crosses show results of 2 iterations of
optimization using Newton’s method. c) The logistic sigmoid functions asso-
ciated with the parameters at each optimization step. As the log likelihood
increases, the model fits the data more closely: the green points represent
data where y = 0 and the purple points represent data where y = 1 and so
we expect the chosen model to increase from right to left just like curve 3.

For general functions, gradient ascent and Newton approaches only find local
maxima: we cannot be certain that there is not a taller peak in the likelihood

function elsewhere. However the log likelihood for logistic regression has a special

property: it is a convex function of the parameters φ. For convex functions there

are never multiple maxima and gradient based approaches are guaranteed to find

the global maximum. It is possible to establish whether a function is convex or

not by examining the Hessian matrix. If this is positive definite for all φ then the

function is convex. This is obviously the case for logistic regression as the Hessian

(equation 8.10) consists of a positive weighted sum of outer products.

The logistic regression model as described has a number of problems:

1. It is overconfident as it was learnt using maximum likelihood

2. It can only describe linear decision boundaries

3. It is computationally innefficient and may overlearn the data in high dimen-

sions.

In the remaining part of this chapter we will extend this model to cope with

these problems (figure 8.5)
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  w1

  w2   w
tφ

    p C1 |φ( ) = y φ( ) = σ w tφ( )
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Bayesian Logistic Regression 

  Unfortunately, the posterior over w will not be 
normal for logistic regression, and hence we cannot 
integrate over it analytically. 

  This means that we cannot do Bayesian prediction 
analytically. 

  However, there are methods for approximating the 
posterior that allow us to do approximate Bayesian 
prediction. 

  We can make logistic regression Bayesian by applying a prior over w:

   p(w) = N(w |m0,S0)
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The Laplace Approximation 
  In the Laplace approximation, we approximate the log of a 

distribution by a local, second order (quadratic) form, centred at the 
mode. 

  This corresponds to a normal approximation to the distribution, with 
  mean given by the mode of the original distribution 
  precision matrix given by the Hessian of the negative log of the 

distribution 
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Bayesian Logistic Regression 

  When applied to the posterior over w in logistic 
regression, this yields 

    

p(w)  q(w) = N w | wMAP ,SN( )
where

S−1
N = S−1

0 + yn 1− yn( )φnφ
t
n

n=1

N

∑
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Prediction 

  Bayesian prediction requires that we integrate out 
this posterior over w: 

     p C1 |φ,t( ) = p C1 |φ,w( )∫ p(w | t)dw  σ w tφ( )∫ q(w)dw

 

This integral is not tractable analytically.  
However, approximation of the sigmoid function σ (⋅) 
by the inverse probit (cumulative normal) function
yields an analytical solution:

     

p C1 |φ,t( )  σ κ σa
2( ) µa( ),

where µa = wMAP
t φ,   σa

2 = φ tSNφ   and κ σa
2( ) = 1+ πσa

2 / 8( )−1/2
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Bayesian Logistic Regression 

  This last approximation is excellent! 

8.3 Non-Linear Logistic Regression 147
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Figure 8.8 Approximation of activation integral (equation 8.17). a) Actual
result of integral as a function of µa and σ2

a. b) Approximation (equation
8.18). c) The absolute difference between the actual result and the approx-
imation is very small over a large range of reasonable values.

Figure 8.9 Bayesian logistic regression predictions. a) The Bayesian predic-
tion for the class y is more moderate than the maximum likelihood estimate.
b) In two dimensions (compare to figure 8.3c) this effect is greatest as we
move farther from the mean. In practice this means that although the deci-
sion boundary (blue line) is still linear, iso-probability curves at levels other
than 0.5 are curved.

• Heaviside Step functions of projections: zk = Heaviside[αT
k x]

• Arc tan functions of projections: zk = arctan[αT
k x]

• Radial basis functions: zk = exp

�
− 1

λ0
(x−αk)

T
(x−αk)

�

where zk denotes the kth element of the transformed vector z. As usual we have

  
σ κ σa

2( ) µa( ) Residual 
   σ w tφ( )∫ q(w)dw


