LINEAR MODELS FOR
CLASSIFICATION




Classification: Problem Statement

In regression, we are modeling the relationship
between a continuous input variable x and o
continuous target variable t.

In classification, the input variable x is still
continuous, but the target variable is discrete.

In the simplest case, t can have only 2 values.
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Example Problem

-1 Animal or Vegetable?
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Linear Models for Classification

o Linear models for classification separate input vectors into
classes using linear decision boundaries.

Example:

Input vector x
Two discrete classes C1 and 02
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Discriminant Functions

A linear discriminant function y(x) = f(wtx + WO)

maps a real input vector x to a scalar value y(x).

f(-) is called an activation function.
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Qutline

Linear activation functions
Least-squares formulation

Fisher’s linear discriminant
Nonlinear activation functions

Probabilistic generative models

Probabilistic discriminative models
Logistic regression

Bayesian logistic regression
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Two Class Discriminant Function

y>0 L2

Let f(-) be the identity: R
y(x)=w'x+w,

y(x)=0— x assigned to C,
y(x) <0 — x assigned to (,

Thus y(x) =0 defines the decision boundary
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K>2 Classes

ldea #1: Just use K-1 discriminant functions, each of
which separates one class C, from the rest. (One-
versus-the-rest classifier.)

Problem: Ambiguous regions
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K>2 Classes

ldea #2: Use K(K-1)/2 discriminant functions, each
of which separates two classes (;, (, from each
other. (One-versus-one classifier.)

Each point classified by majority vote.

Problem: Ambiguous regions
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K>2 Classes

ldea #3: Use K discriminant functions y, (x)
Use the magnitude of y,(x), not just the sign.
Y (X)=wW,X+w,,

x assigned to C, if y,(x) >y, (x)Vj =k

Decision boundary y, (x) = yj(x) - (Wk —w, )t X+ (Wko — Wjo) =0

Results in decision regions that are
simply-connected and convex.
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Learning the Parameters

1 Method #1: Least Squares
Y, (X)=W,X+W,,

— y(x)= W'k

where
x=(1,x")

W is a (D +1)x K matrix whose kth column is W, = (WO,WZ)t
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Learning the Parameters

Method #1: Least Squares

y(x) = W'x
Training dataset (xn,tn), n=1,....N
where we use the 1-of-K coding scheme for t_
Let T be the N x K matrix whose n” row is t’
Let X be the N x (D +1) matrix whose n" row is x'

: =~y 1 - = t (o

We define the error as E (W) = 2 Tr {(XW — T) (XW — T)}
Setting derivative wrt W yields:
W= (XX) XT=XT
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Fisher’s Linear Discriminant

Another way to view linear discriminants: find the 1D subspace
that maximizes the separation between the two classes.

Letm1=N12xn, mzzNiz:xn

1 neC, 2 ned,

For example, might choose w to maximize w' (m2 — m1), subject to HWH =1

This leads to w o m,-m,

4t e
0_\\.'," S
However, if conditional distributions are not isotropic, ) "'l["
this is typically not optimal. | s
-2 2 6
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Fisher’s Linear Discriminant

Let m =w'm,, m,=w'm, be the conditional means on the 1D subspace.

Let slf = Z ( Yy, - mk)2 be the within-class variance on the subspace for class C,

neCk
2
. (m,—m,)
The Fisher criterion is then J(w)=-~——— 4
S;+S;
This can be rewritten as 2
w'S w
Jw)=—-" 0
w SWw
where ol

t . .
S, =(m,-m,)(m,-m,) is the between-class variance

and
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S, =), (xn - m1)(xn - m1)t + (xn - mz)(xn - mz)t is the within-class variance

neC1 neC2

J(w) is maximized forw « S/ (m2 - m1)
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Connection between Least-Squares and FLD

Change coding scheme to

t :% for C,

Then one can show that the ML w satisfies
WoS (m2 — m1)
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Least Squares Classifier
e

71 Problem #1: Sensitivity to outliers
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Least Squares Classifier

1 Problem #2: Linear activation function is not a
good fit to binary data. This can lead to problems.
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Qutline

Linear activation functions
Least-squares formulation

Fisher’s linear discriminant

Nonlinear activation functions
Probabilistic generative models

Probabilistic discriminative models
Logistic regression

Bayesian logistic regression
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Probabilistic Generative Models

1 Consider first K=2:

By Bayes' equation, the posterior for class C, can be written:
p(x1¢)p(;)

p(q'x)_P(MC})/@(G)W(XIQ)P(Q)
1 s

1+ exp(—a)
where

and o(a) is the logistic sigmoid function
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Probabilistic Generative Models

Let's assume that the input vector x is multivariate normal, when conditioned upon the class C,,
and that the covariance is the same for all classes:

1 1 _
p(x1G,)= 27‘C)D/2 ‘2‘1/2 P {_E(x_“k)t z 1(x_uk)}

Then we have that ,O(C1 |x) = G(WtX+ WO)

where
w=x" (“1 - ,LL2)

1 1, p(C,
Wo == HE o 12, +10g 5 (( c;))

Thus we have a generalized linear model,
and the decision surfaces will be hyperplanes in the input space.
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Probabilistic Generative Models

This result generalizes to K > 2 classes :
__px16)p(C)

P S i Jolc)
_eela) o,
;eXp(aj) sottmax
where

Then we have that a, (x)=wx+w,
where
W, =274,

1 .
W, = _Euf‘z ", + Iogp(Ck)
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Non-Constant Covariance
=N

0 If the class-conditional covariances are different,
the generative decision boundaries are in general
quadratic.

777777777777
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ML for Probabilistic Generative Model

Lett =1denote Class 1,{ =0 denote Class 2.
Let 7 = p(q) sothat1- 7 = p(CZ)

Then the ML estimates for the parameters are:

T = N ZZMSPL%SZ
N, + N, N N
where
= 1§N:t S, =Y x - )(x, 1)
‘LL1—N1n:1 nxn 1 N1 = n 1 n 1
and
1 < 1 t
‘LLZZEn:1(1_tn)xn SZZE%(Xn_‘L%)(Xn_HZ)
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Probabilistic Discriminative Models

An alternative to the generative approach is to
model the dependence of the target variable t on

the input vector x directly, using the activation
function f.

One big advantage is that there will typically be
fewer parameters to determine.
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Logistic Regression (K = 2)

p(C,19)=1-p(C,|9) " 1-exp(-a)
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Logistic Regression

ola)= 1— exp(—a)

Number of parameters

Logistic regression: M

Generative model: 2M + M(M+1)/2 + T = M(M+5) /2+1
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ML for Logistic Regression

N 1t t
P(t|W)=Hy;"{1—yn} " wheret=(t1,...,tN) andyn:p(qmn)

n=1

We define the error function to be E(w) = —Iogp(t | w)

Giveny = G(an) and a =w'¢ , one can show that

VE(W)= Z(y,, -t )9,

Unfortunately, there is no closed form solution for w.
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ML for Logistic Regression:

lterative Reweighted Least Squares

Although there is no closed form solution for the ML
estimate of w, fortunately, the error function is convex.

Thus an appropriate iterative method is guaranteed to
find the exact solution.

A good method is to use a local quadratic

approximation to the log likelihood function (Newton-
Raphson update):

w(new) — W(old) . H—1VE(W)

where H is the Hessian matrix of E(w)

UUUUUU ot ' CSE 6390/PSYC 6225 Computational Modeling of Visual Perception J. Elder

IIIIIIIIII




ML for Logistic Regression

w(new) — W(old H 1VE( )
where H is the Hessian matrix of E(w):

H=®RD
where R is the N x N diagonal weight matrix with R =y _ (1 - yn)

(Note that, since R >0, R is positive semi-definite, and hence H is positive semi-definite
Thus E(w) is convex.)

Thus
w’ W = W (old) ((I)tR(D) P! (y . t)
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ML for Logistic Regression

1 Iterative Reweighted Least Squares
p(Ci19)=y(9)=0(w'9)

X,(V)EB“IS ' CSE 6390/PSYC 6225 Computational Modeling of Visual Perception J. Elder

IIIIIIIIII




Bayesian Logistic Regression

We can make logistic regression Bayesian by applying a prior over w:

p(w)=N(w|m;S)

Unfortunately, the posterior over w will not be
normal for logistic regression, and hence we cannot
integrate over it analytically.

This means that we cannot do Bayesian prediction
analytically.

However, there are methods for approximating the
posterior that allow us to do approximate Bayesian
prediction.
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The Laplace Approximation

In the Laplace approximation, we approximate the log of a
distribution by a local, second order (quadratic) form, centred at the
mode.

This corresponds to a normal approximation to the distribution, with
mean given by the mode of the original distribution

precision matrix given by the Hessian of the negative log of the

distribution
05 P 0 _ —logp(z)
06} - 301
041 : 20}
02} : 10}
\
SO o0 1 2 3 a4 S
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Bayesian Logistic Regression

1 When applied to the posterior over w in logistic
regression, this yields

p(w)=q(w)=N(w|w,,..S,)
where

N
S, =S,+>v,(1-v,)8,9!
n=1
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Prediction

Bayesian prediction requires that we integrate out
this posterior over w:

p(Gi19.)= [ p(C;190.W)o(w | idw = [ o (w'Ja(w)ow

This integral is not tractable analytically.

However, approximation of the sigmoid function o ()
by the inverse probit (cumulative normal) function
yields an analytical solution:

p(Cilo.t)=o(x(o7)n, )

where u_=w,,. ¢, o.=¢'S,¢ and K(Gaz) = (1 + 10 /8)_1/2
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Bayesian Logistic Regression

Ja(wtq))q(w)dw G(K(Gj)ua) Residual

10.0

0.02

,LLCL 5 -5 ,LLCL 5 -5 IL[JCL 5

01 This last approximation is excellent!
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